教育背景
2002/09 – 2007/06,山東大學(xué),化學(xué)與化工學(xué)院,博士
1998/09 – 2002/06,山東大學(xué),化學(xué)與化工學(xué)院,學(xué)士
科研教學(xué)經(jīng)歷
2015/06-今 南開(kāi)大學(xué)環(huán)境科學(xué)與工程學(xué)院,博士生導(dǎo)師
2014/12-今 南開(kāi)大學(xué)環(huán)境科學(xué)與工程學(xué)院,教授
2013/01-2014/02 訪問(wèn)學(xué)者, University of Notre Dame,USA
2009/12-2014/12 南開(kāi)大學(xué)環(huán)境科學(xué)與工程學(xué)院,副教授
2007/07-2009/12 南開(kāi)大學(xué)環(huán)境科學(xué)與工程學(xué)院,講師
學(xué)術(shù)與社會(huì)任職
[2] International Journal of Environmental Pollution and Solutions,編委
[3] International Journal of Green Technology,編委
[4] 天津市生態(tài)環(huán)保行動(dòng)促進(jìn)會(huì),常務(wù)理事
[5] 中國(guó)石油和化學(xué)工業(yè)聯(lián)合會(huì)生物化工與生物質(zhì)能源專業(yè)委員會(huì),委員
科研項(xiàng)目
[1] 石墨烯改性納米磁晶對(duì)有機(jī)污染物及致病微生物協(xié)同修復(fù)和機(jī)制研究,國(guó)家自然科學(xué)基金(批準(zhǔn)號(hào):21377061);
[2] 可編織納米纖維SCR催化劑制備及低溫超高效脫除NOx關(guān)鍵技術(shù)及應(yīng)用,天津市科技支撐重點(diǎn)項(xiàng)目(批準(zhǔn)號(hào): 13ZCZDSF00300);
[3] 南水北調(diào)來(lái)水及受水區(qū)痕量致病微生物的高效去除研究,天津市自然科學(xué)基金重點(diǎn)項(xiàng)目(批準(zhǔn)號(hào): 15JCZDJC41200);
[4] Fe3O4納米磁晶脫除水中5-氯酚的效能研究,天津市自然科學(xué)基金(批準(zhǔn)號(hào): 12JCQNJC05800);
[5] 石墨烯功能改性納米磁晶對(duì)水體復(fù)合污染的協(xié)同生態(tài)修復(fù)研究,南開(kāi)大學(xué)亞洲研究中心項(xiàng)目(批準(zhǔn)號(hào): AS1326);
[6] Fe3O4/TiO2核殼納米纖維吸附脫除水中氯酚類(lèi)化合物的分子機(jī)理研究,國(guó)家自然科學(xué)基金(批準(zhǔn)號(hào):20907022);
[7] 鈦基納米纖維可見(jiàn)光催化脫除室內(nèi)典型VOCs的基礎(chǔ)研究,教育部博士點(diǎn)基金(批準(zhǔn)號(hào):200800551003);
[8] 鈦基納米材料在環(huán)境分析控制中的應(yīng)用研究,科技部“863”項(xiàng)目子課題(批準(zhǔn)號(hào):2006AA06Z424).
代表性學(xué)術(shù)論著:
[1] Interfacial nano-biosensing in microfluidic droplets for high-sensitivity detection of low-solubility molecules, Chemical Communications, 2016, in press.
[2] Enhanced disinfection application of Ag-modified g-C3N4 composite under visible light, Applied Catalysis B: Environmental, 2016, 186: 77-87.
[3] Superior antibacterial activity of Fe3O4-TiO2 nanosheets under solar light, ACS Applied Materials & Interfaces, 2015, 7(39): 21875-21883.
[4] NH3-SCR performance Improvement of mesoporous Sn modified Cr-MnOx catalysts at low temperatures, Catalysis Today, 2015, 258(1): 103-111.
[5] Highly efficient antibacterial and Pb(II) removing effects of Ag-CoFe2O4-GO nanocomposite. ACS Applied Materials & Interfaces, 2015, 7: 10576-10586.
[6] Energy-saving removal of methyl orange in high salinity wastewater by electrochemical oxidation via a novel Ti/SnO2-Sb anode-Air diffusion cathode system, Catalysis Today, 2015, 258(1): 156-161.
[7] Highly efficient removal of NO with ordered mesoporous manganese oxide at low temperature, RSC Advances, 2015, 5: 29353-29361.
[8] Highly efficient removal of pathogenic bacteria with magnetic graphene composite. ACS Applied Materials & Interfaces, 2015, 7(7): 4290-4298.
[9] Facile Preparation of Ordered Mesoporous MnCo2O4 for Low-temperature Selective Catalytic Reduction of NO with NH3. Nanoscale, 2015, 7: 2568-2577.
[10] Low-temperature selective catalytic reduction of NO with NH3 over ordered mesoporous MnxCo3-xO4 catalyst. Catalysis Communications, 2015, 62: 107-111.
[11] Li Y. Facile preparation of MnO2 doped Fe2O3 hollow nanofibers for low temperature SCR of NO with NH3. Journal of Materials Chemistry A, 2014, 2: 20486-20493.
[12] Coaxial-electrospun magnetic core-shell Fe@TiSi nanofibers for the rapid purification of typical dye wastewater. ACS Applied Materials & Interfaces, 2014, 6 (19): 16841-16850.
[[13] Efficient removal of pathogenic bacteria and viruses by multifunctional amine-modified magnetic nanoparticles. Journal of Hazardous Materials, 2014, 274: 115-123.
[14] Rapid degradation of toxic toluene using novel mesoporous SiO2 doped TiO2 nanofibers, Catalysis Today, 2014, 225: 10-17.
[15] In-Situ Studies of Nanocatalysis. Accounts of Chemical Research, 2013, 46(8): 13-1739.
[16] In situ surface chemistries and catalytic performances of ceria doped with palladium, platinum, and rhodium in methane partial oxidation for the production of syngas. ACS Catalysis, 2013, 3 (11), 2627-2639.
[17] Great application prospect in vivo: efficient electroformation of giant vesicles on novel carbon fiber microelectrode. Electrochemistry Communications, 2012, 25: 151-154.
[18] Mesoporous Fe2O3 doped TiO2 nanostructured fibers with higher photocatalytic activity. Journal of Colloid and Interface Science, 2011, 355(2): 328-333.
[19] Catalytic hydrolysis of lignocellulosic biomass into 5-hydroxymethylfurfural in ionic liquid. Bioresource Technology, 2011, 102(5): 4179-4183.
[20] The effects of temperature and catalysts on the pyrolysis of industrial wastes (herb residue). Bioresource Technology, 2010, 101(8): 3236-3241.
[21] New observation of near-reversible behaviors for the [Fe(CN)6]3-/4- redox couple in vesicular solution. Journal of Electroanalytical Chemistry, 2009, 632: 162-169.
[22] Co-electrospun SiO2 hollow nanostructured fibers with hierachical walls. Journal of Colloid Interface Science, 2008, 318(2): 331-336.
[23] Mesoporous TiO2/SiO2 composite nanofibers with selective photocatalytic properties. Chemical Communication, 2007, 2043-2045.
[24] Long TiO2 hollow fibers with mesoporous walls: sol-gel combined electrospun fabrication and photocatalytic properties. Journal of Physical Chemistry B, 2006, 110(213): 11199-11204.
[25] Facile fabrication of long α-Fe2O3, α-Fe and γ-Fe2O3 hollow fibers using sol-gel combined co-electrospinning technology, Journal of Colloid Interface Science, 2007, 308(1): 265-270.
學(xué)術(shù)論著
[2] 清潔生產(chǎn)教程,化學(xué)工業(yè)出版社;
[3] 中國(guó)大百科全書(shū):環(huán)境科學(xué),中國(guó)大百科全書(shū)出版社。
榮譽(yù)與獎(jiǎng)勵(lì)
[2] 天津市一三一科技人才計(jì)劃第二層次人才,2015年;
[3] 第九屆國(guó)際水資源會(huì)議青年學(xué)術(shù)獎(jiǎng),2014年;
[4] 天津市環(huán)境保護(hù)科學(xué)技術(shù)獎(jiǎng)二等獎(jiǎng),排名第2。